Content-type: text/html Manpage of IPSEC_RSASIGKEY


Section: Maintenance Commands (8)
Updated: 22 July 2001
Index Return to Main Contents


ipsec rsasigkey - generate RSA signature key  


ipsec rsasigkey [ --verbose ] [ --random filename ] \
   [ --rounds nr ] [ --hostname host ] [ --noopt ] --vary
ipsec rsasigkey [ --verbose ] [ --random filename ] \
   [ --rounds nr ] [ --hostname host ] [ --noopt ] nbits
ipsec rsasigkey [ --verbose ] [ --hostname host ] \
    [ --noopt ] --oldkey file  


Rsasigkey generates an RSA public/private key pair, suitable for digital signatures, of (exactly) nbits bits (that is, two primes each of exactly nbits/2 bits, and related numbers) and emits it on standard output as ASCII (mostly hex) data. nbits must be a multiple of 16.

The --vary option makes rsasigkey generate a key with nbits randomly generated within certain bounds (1536 and 4096). Either nbits or --vary must be specified.

The public exponent is forced to the value 3, which has important speed advantages for signature checking. Beware that the resulting keys have known weaknesses as encryption keys and should not be used for that purpose.

The --verbose option makes rsasigkey give a running commentary on standard error. By default, it works in silence until it is ready to generate output.

The --random option specifies a source for random bits. The default is /dev/random (see random(4)). Normally, rsasigkey reads exactly nbits random bits from the source; in extremely-rare circumstances it may need more.

The --rounds option specifies the number of rounds to be done by the mpz_probab_prime_p probabilistic primality checker. The default, 30, is fairly rigorous and should not normally have to be overridden.

The --hostname option specifies what host name to use in the first line of the output (see below); the default is what gethostname(2) returns.

The --noopt option suppresses an optimization of the private key (to be precise, setting of the decryption exponent to lcm(p-1,q-1) rather than (p-1)*(q-1)) which speeds up operations on it slightly but can cause it to flunk a validity check in old RSA implementations (notably, obsolete versions of ipsec_pluto(8)).

The --oldkey option specifies that rather than generate a new key, rsasigkey should read an old key from the file (the name - means ``standard input'') and use that to generate its output. Input lines which do not look like rsasigkey output are silently ignored. This permits updating old keys to the current format.

The output format looks like this (with long numbers trimmed down for clarity):

        # RSA 2048 bits   Sat Apr 15 13:53:22 2000
        # for signatures only, UNSAFE FOR ENCRYPTION
        Modulus: 0xcc2a86fcf440...cf1011abb82d1
        PublicExponent: 0x03
        # everything after this point is secret
        PrivateExponent: 0x881c59fdf8...ab05c8c77d23
        Prime1: 0xf49fd1f779...46504c7bf3
        Prime2: 0xd5a9108453...321d43cb2b
        Exponent1: 0xa31536a4fb...536d98adda7f7
        Exponent2: 0x8e70b5ad8d...9142168d7dcc7
        Coefficient: 0xafb761d001...0c13e98d98

The first (comment) line, indicating the nature and date of the key, and giving a host name, is used by ipsec_showhostkey(8) when generating some forms of key output.

The commented-out pubkey= line contains the public key---the public exponent and the modulus---combined in approximately RFC 2537 format (the one deviation is that the combined value is given with a 0s prefix, rather than in unadorned base-64), suitable for use in the ipsec.conf file.

The Modulus, PublicExponent, and PrivateExponent lines give the basic signing and verification data.

The Prime1 and Prime2 lines give the primes themselves (aka p and q), largest first. The Exponent1 and Exponent2 lines give the private exponent mod p-1 and q-1 respectively. The Coefficient line gives the Chinese Remainder Theorem coefficient, which is the inverse of q, mod p. These additional numbers (which must all be kept as secret as the private exponent) are precomputed aids to rapid signature generation.

No attempt is made to break long lines.

The US patent on the RSA algorithm expired 20 Sept 2000.  


ipsec rsasigkey --verbose 2192 >mykey
generates a 2192-bit signature key and puts it in the file mykey, with running commentary on standard error. The file contents can be inserted verbatim into a suitable entry in the ipsec.secrets file (see ipsec.secrets(5)), and the public key can then be extracted and edited into the ipsec.conf file (see ipsec.conf(5)).
ipsec rsasigkey --verbose --oldkey oldie >latest
takes the old signature key from file oldie and puts a version in the current format into the file latest, with running commentary on standard error.




random(4), ipsec_showhostkey(8)
Applied Cryptography, 2nd. ed., by Bruce Schneier, Wiley 1996.
RFCs 2537, 2313.
GNU MP, the GNU multiple precision arithmetic library, edition 2.0.2, by Torbj Granlund.  


Written for the Linux FreeS/WAN project <> by Henry Spencer.  


There is an internal limit on nbits, currently 20000.

Rsasigkey's run time is difficult to predict, since /dev/random output can be arbitrarily delayed if the system's entropy pool is low on randomness, and the time taken by the search for primes is also somewhat unpredictable. A reasonably typical time for a 1024-bit key on a quiet 200MHz Pentium MMX with plenty of randomness available is 20 seconds, almost all of it in the prime searches. Generating a 2192-bit key on the same system usually takes several minutes. A 4096-bit key took an hour and a half of CPU time.

The --oldkey option does not check its input format as rigorously as it might. Corrupted rsasigkey output may confuse it.




This document was created by man2html, using the manual pages.
Time: 19:04:25 GMT, April 17, 2004